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The usual right congruence :"L can be generalized in the following manner: 
x ~£: ,LY :¢> {z t xz e L  ~:~yz eL}  ~,LP, where ~9 ° is a family of languages. 
It turns out to be useful when £# is a falter with an additional property. Further- 
more semifilters are introduced and studied. It is also possible to define con- 
gruences by filters. Assuming the (right) congruences to have finite index yields 
a generalization of the regular sets. 

1. INTRODUCTION AND PRELIMINARIES 

The  well-known mathematical concept filter has been already used in the  
theory of formal languages (Benda, Bendov~, 1976). The same will be done 
here, but  the point of view is another one: Let  L _C Z*  and let 58 C ~3(Z*) be 
a filter with a certain division proper ty  (see below). Then  by 

x ~ . L Y  : ¢ > { z Z x z E L c > y z e L } ~ 5 8  

a right congruence is defined, which reduces to the well-known right congruence 
:--% of the theory of formal languages by taking 58 = {Z*}. 

A similar concept is used in model  theory. (See Bell,  Machover  (1977, 
p. 174 iT.).) 

Wi th  respect to the use of systems 58 C ~ ( Z * )  in the theory of formal 
languages compare also (Prodinger, Urbanek,  1979) and (Prodinger, 1979). 

In  Section 2 necessary and sufficient conditions for a family 58 are presented 
to define a right congruence; appropriate  definitions will be given. 

In  Section 3 the concepts introduced in Section 2 are investigated in detail. 
In  Section 4 the considerations are extended to the case of congruences. 
In  Section 5 some generalizations of the family of the regular sets are intro-  

duced and closure propert ies of these families are investigated. 
In  Section 6 some remarks are made concerning probably  the most interesting 

special case (i.e., if c# is the family of cofinite sets). 
Now the essential definitions are given: Z* denotes the free monoid  generated 

by  Z with unit  e, Z + - -  Z* {E}. • denotes the symmetrical  difference of two 
sets; A o B :--  (A  /~ B)  ~. w \ L  - -  {z ] w z  e L }  and L/w  - -  {z  I z w  eL} .  
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For a formal language L let 

GL(x, y)  : =  {z t x z  e L  ~-  y z  e L }  = (x\L) o (y \L) .  

The right congruenc e ~L  is defined by 

x "~L Y : ~  GL(x, y )  = ~* .  

Finite automata are written as quintuples (Q, X, 3, qo, F).  If  no final states 
are considered it will be written (Q, 27, 3, %). The termini state and class are 
used synonymously. (The state q corresponds to the class {w e Z* 1 3(%, w) ~ q}.) 

If there is said nothing else, it is assumed that an arbitrary but fixed alphabet 
X is given. 

It is to be remarked that this paper allows a family ~o to be empty. 
Concepts of the theory of formal languages not especially described can be 

found in (Eilenberg, I974). 

2. RIGHT CONGRUENCES AND FILTERS 

DEFINITION 2.1. A family of languages A ° _C ~(Z*) is called a filter with 
division property (FD), if the following axioms are valid: 

(FD1) G~ a v~ ~5 

(FD2) A, BeX£~Ac3BE~° 

(FD3) A e ~ , A C _ B ~ B e ~  

(FD4) A e ~ ,  z e X* =~ z \ A  e ~ .  

DEFINITION 2.2. A family of languages ~ _C ~(2J*) is called a semifilter 
with division property (SFD), if the following axioms are valid: 

(SFD1) Z'* ~ ~q~ 

(SFD2) A,  B ~ q '  ~ A o B s~q ~ 

(SFD3) A e ~q~, z E X* ~ z \ A  ~ ~q'. 

Each FD is also an SFD: (SFD1) follows from (FD1) and (FD3); (SFD2) 
follows from (FD2) and (FD3) if A o B = (A c~ B) t3 (A t3 B) c is taken in 
account. 

DEFINITION 2.3. X ~ ' , L  Y :<=> GL(X, y )  e ~ .  

THEOREM 2.4. I f  ~ iS an SFD then ~'~',L is a right congruence. 
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Proof. The reflexivity follows from (SFD1). The symmetry is clear. The 
transitivity can be seen as follows: 

GL(X, z) = (xlL) o (z\L) = (xlL) o Z*  o (zlL) 

= (x\L) o (y \L)  o (y \L)  o (z\L) -~ Gz(x, y )  o Gz(y,  z), 

and hence (SFD2) can be used. 
Now assume x ~-~ao.L y and z ~ Z*, i.e., GL(x, y)  = (x\L) o (y \L)  ~ ~q~. By 

(SFD3) z\[(x\L) o (y/L)] = (z\(x\L)) o (z \ (y lL))  = (xzlL) o ( y z l L ) - -  

GL(xz, y z )  ~ .W. Hence xz  "~s*,z Y~'. 
(The rules for o, which are used here will be treated in the next section.) 
The  next theorem can be seen as a conversion of Theorem 2.4: 

THEOREM 2.5. I f  [ Z [  >~ 2 and ~'<~.L is a right congruence for all L, then 5~ 
is an SFD. 

Proof. First the following will be shown: Let A, B be given. Then  x, y, z, L 
can be found, such that 

(x lL)  o (y /L)  = n and (y \Z)  o (z \Z)  = B. 

Let  x --= a, y = E, z ~ b. The language L is recursively defined by: 

E•L, 
~ c Z - -  {a, b}, w c Z *  ~ a w C L  

a w c L  : ~  [wc  A ~:~ w c L ]  

bw e L  : ~  [ w c  B <=~ w c L ] .  

I t  is not hard to verify the desired properties. 
I f  (SFD1) does not hold, reflexivity is missing. 
I f  (SFD2) does not hold, i.e., A, B ~ oLP and A o B ~ .~z o, define x, y ,  z, L as 

above. Then x ~ae.L Y, Y "~£a,L Z but not x ' ~ ' , L  z. 
I f  (SFD3) does not hold then A, z exist, such that A ~ f8, z \A  q~ ,L,¢. Define 

x, y, L such that (xlL) o (y \L)  ~ A.  Consequently x e~a~,L y but not xz  ~'~se,L yz.  

I t  seems to be of a certain interest to take in consideration filters in this 
context though the filter axioms are stronger than it is necessary; filters are a 

convenient concept. 
Similar to the proof of Theorem 2.4 i s the  demonstration of 

THEOREM 2.6. I f  ~ is an SFD then by 

A ~ B  :~=~A o B e ~  -q~ 

an equivalence relation is defined. 
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Proof. For sake of clarity it will be shown that A , - ~  B, B ~ C implies 
A ~ e C .  

By the assumptions A o B ~ £  p, B o C ~  hold. Hence by (SFD2) 
( A o B )  o ( B o C ) = A o ( B o B ) o C = A o Z ' * o C = A o C ~ f ,  i.e., A~-~a,B. 

THEOREM 2.7. Let be ~gf an SFD. I f  A ~".v B then 

t'~.J cp A ~ r ~ a ~ ,  B . 

Proof. By symmetry it is sufficient to show that x ~.~.A Y implies that 

X :~£#,B Y. 
From A ,  B ~ No follows 

x \ (A  o B)  = (x \A)  o (xlB) ~ ~ .  

By the assumption (x \A)  o ( y \ A )  ~ ~f .  Thus 

( x \ B )  o ( x \ A )  o ( x \ A )  o ( y \ A )  = ( x \ B )  o Z *  o ( y \ A )  = ( x \ B )  o ( y \ A )  ~ ~ .  

A similiar argumentation gives 

y \ ( A o  B) = ( y l A )  o ( y \ B )  E ~f,  

and therefore 

(x\B)  o ( y \ A )  o ( y \ A )  o ( y lB )  = (x\B) o ( y tB )  ~ ~f.  

(See the next section concerning the rules for o.) 

3. PROPERTIES OF FD's AND SFD's  

Defining SFD ' s  it is sufficient to substitute (SFD1) by the weaker one 

(SFDI ' )  ~Cf ~ ;~, 

since from A E ~f  follows A o A = Z'* ~ ~f. 
I t  is well-known that (~(X*), A,  53) forms a ring. The valid laws can be 

reformulated in terms of o: 

A z~ Z = A ,  therefore A o  2~ = A  e 

A A A = ;~, therefore A o A = Z'* 

A A A ~ = Z ' * ,  therefore A o A  ~ =  ~ .  
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( A A B )  ~ = A ~ B  ~ i m p l i e s A o B = A A B  e • T h u s A o 2 7 * = A A  ~ = A .  
Hence 

A o ( B o C ) = A o ( B A C 9  = A  c A B A C  c 

= (A o'B) A Co = ( A o  B) o c .  

Therefore (~(27"), o) is a group, 27* being the unit and each element being 
self-inverse. 

(Ao B) u C = [(Ao B) u C]oo = [(Ao B)o n Cqo = [(A A B9 ° n Co]o 

= [(A0 A B0) n co]o = [(A~ n c 9  A (B~ n c9]o 

= [(A u c)o A (B u c)o]~ = (A u c)~ A (B u c) 

= (A u C) o (B u c),  

thus (~3(Z*), o, 'o)is a ring. 
It  is evident that z\(A o B) - -  (z \d)  o (z\B) holds. For fxed  z the mapping 

d F-~ z\ . / / is  an endomorphism of rings. 
I t  is possible to speak of the SFD generated by 5¢, since ~3(Z*) is an SFD 

and arbitrary meets of SFD ' s  are again SFD's .  
Now some items to the FD's .  
From ;~ e £¢ follows 5¢ = ~3(Z*) if ~q~ is a filter. Therefore especially those 

F D ' s  are of interest for which ~ e ~¢ does not hold; call them proper. 
Again it is possible to speak of the FD generated by ~c¢, and it is interesting, 

whether or not it is proper. 

EXAMPLE 1. Let be ~ = { L  IL c is finite}, i.e., ~ is the family of cofinite 
languages over 27. I t  is not hard to see that ~ is an FD. 

I f  X = {a}, it is possible to see a subset of a* as a 0-1-sequence if one identifies 
the set with its characteristic function. 

As an example, the set a(aaa)* corresponds to the 0-1-sequence 
01001001001 "" .  

In  the sequel k consecutive l ' s  in a 0-1-sequence are called 1-block of length k. 

THEOREM 3.1. Let 5¢' C ~(a*). I f  5¢' contains an A with the property that 
only 1-blocks with a length ~ k  appear, then the FD ~a generated by .W' is not 
proper. 

Proof. Consider (a \A)n  _//; this set is in ~ and contains only 1-blocks 
with a length -~<k - -  1. Thus  

r~ = A n ( a \ A )  n .. .  n ( a ~ \ A )  ~ ~ f  . 

The following theorem is a kind of conversion. 
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THEOREM 3.2. I f  A contains arbitrary long 1-blocks, then the F D  ~¢ generated 

by {A} is proper. 

Proof. I t  is sufficient to show that it  is impossible that sets which are in 
by  means of (FD2)  and (FD4)  are the empty set. 

Hence it is sufficient to show that always 

(ai°\A) n ... n (d" \A)  ~ ~ .  

Thus  it is sufficient to verifie that  for all n 

(a°\A) n ... n (a ' \A)  ~ ;~. 

This  is guaranteed by the existence of arbitrary long 1-blocks. 

In  order to generalize this interpretat ion as a sequence the following definition 

is given: 

DEFINITION 3.3. $2 = ~2(X) = {( ,)~=o ] o~n+l = oJ~a, a e Z, 020 
This  leads to 

EXAMPLE 2. ~ = {L I lira i n f , + ,  i oJ,~ n L l/(n + 1) = 1 for all a, e ~} is a 
p roper  F D  and ~ C ~ .  

I f  l im inf is replaced by lim sup the generated F D  og~ is not proper;  let 
27 = {a} and construct  A as follows: (oJ = (0, 1,...)) 

the n-th 1-block is as large as [ A n w~ [ 1 
n + l  ~ n '  

the n - t h  0-b lock  is as large as I A n con I 1 
n + l  ~ n '  

then A and A c are in ~¢, and thus ;d = A n A e ~ ~ .  

I t  is impossible to dilate Theorem 3.1 for [ ~ [  ~ 2: 

THEORElVI 3.4. Let be ~ '  = {X* - -  Fa* IF is a finite set} and ~ = (L ! there 
is an L '  ~ £P' and L '  C_L}. (a ~ Z fixed.) 

Then d~ is a proper F D  and there is an oJ ~ ~ such that 

] L n ~ o ~ l  
lira sup - -  1 for all L ~ 

~ n +  1 
does not hoM. 

Proof. Firs t  it  is clear that 27 ~ - -  Fa* can never be ;~. 
I t  will be shown that  for all finite sets F 1 , F 2 there exists a finite set F 3 , such 

that  
( Z * - -  Fla* ) n (Z* -- F2a* ) 2 Z*  -- F3a* 
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is valid. This  is equivalent to 

F~a* wF~a* C_ F~a*. 

I t  is sufficient to choose F~ = F i U F~.  
Now let F~ be finite and z E 27*. I t  will be shown that  there exists a finite F 2 

such that 

zl(Y-,* - -  F i a * )  ~_ X,* - -  F~a* 

holds. This  means 

27* - -  z \ ( F a a *  ) D Z *  - -  F~a* 

or  

z\(Fla*) C_ F2a*. 

I t  is possible to choose F 2 = ( z \ F i ) u  {e}, since from w E z \ ( F l a *  ) follows 
that  z w  E F l a * .  The  first case is w = w l w  ~ and z w  1 E F  1 , thus w i E z \ F  i ; the 
second one is z ~ z~a 7~ and w ~ a z, thus w E a*. 

Let  be w ---- (e, a, aS,...) and L ---- Z* - -  a* e ~ .  Then  

lim sup [ w,  n L [ _ l i m s u p  0 ----- O. 
n ~  n + 1 

This  causes an Example 3. 

4. CONGRUENCE RELATIONS AND FILTERS 

The  syntactic congruence mL (cf. Eilenberg (1974)) can be defined as follows: 

x ~ L  Y : ~  for all u 

for all v 

This  will be generalized in the sequel. 

DEFINITION 4.1. 
addit ionally 

u x  c L -<:~ uy  e L 

x v  e L .e:> y v  e L .  

and 

A filter (semifilter) 5¢ is called F D ; ! ( S F D ' )  if it  fulf i l ls  

A E ~ ,  z e Z *  ~ A l z e ~ ¢ .  

EXAMPLE. ~ is an F D ' .  

DEFINITION 4.2. Let  ~ be an S F D ' ,  ~ an SFD:  

X ~ i , ~ 2 , L y :  ~:> for all v h o l d s { u ] u x v E L  ~ u y v E L } E ~  

for all u h o l d s ( u l u x v E L . ~ - u y v E L } e ~ .  

and 
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THEOREM 4.3. Under the above mentioned assumptions ~ , ~ , L  is a con- 
gruence relation. 

Proof. The  proof  that ~ e ~ , ~ , L  is an equivalence relation corresponds to 
the proof  of Theorem 2.4. 

Assume x ~ f o v ~ v ~ y .  I t  must  be shown that for arbitrary s, tsx ~%,aevL sy 
and xt ~ % . ~ % L y t .  By symmetrical argumentations it is sufficient to prove 
the second part. Let  v be arbitrarily chosen. {u lux t v  6L<~ uytv eL}  ~ ~qt'l, 
since this holds for all v, especially for tv. 

Now let u be arbitrarily chosen. {v [ uxtv e L  <=> uytv eL}  = tl {v [ uxv e L  <=> 
uyv ~ L} ~ ~ . 

5. A GENERALIZATION OF REGULAR ~ETS 

I t  is natural to give the following 

DEFINITION 5.1. Let  ~ be an S F D '  and let ~2 be an SFD. Define ~io1,.~ ~ 
to be the family of all formal languages L, such that ~e~,W,,L has a finite index. 

~ o  is the family of all L such that ~ -~v  L has a finite index. 
Obviously the following holds: I f  ~a __C ~ ; ,  ~ C ~ then ~ 1 , ~  __C ~e~,~e; 

and ~ C ~se~. 

THEOREM 5.2. ~ ( z , ) . s %  -= ~a% • 

Proof. The  inclusion " C "  is clear. 
Now let (Q, 27, 3, q0) be the finite automaton without final states corre- 

sponding to ~ ' ~ . L  • Furthermore let 

~: X* --+ QO be defined by 

~(w): q ~-~ 8(q, w). 

The  congruence ~ corresponding to  the homomorphism ~ is a refinement 
of ~ 2 . L  and has a finite index. 

Now assume w ~ x, i.e., ~ ( w ) =  a(x) and let u be an arbitrary element. 
Then  c~(uw) = c~(ux), i.e., 3(q0, uw) = 3(qo, ux), thus uw ~'.~ZevL Ux, hence 
{v I uwv EL .~- uxv eL} a ~ ; this means w ~ ~(x*).i%.L x. Therefore ~ ~(~.).~ovL 
has at most as many  classes as ~ ,  i.e., only a finite number  of classes. 

In  the sequel it will be assumed that ~ is a F D '  and ~ is a FD.  

LEMMA 5.3. I f  L is ~ , ~-regular  then L c is also ~ , ~o~2-regular. 

Proof. Obvious. 
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LEMMA 5.4. I f  A, B are ~ , Q,regular then A n B is also ~ ,  oZ'2-regular. 

Proof. Define ~ by ~ o , ~ , A  n ~ v z e v ~ .  
Let x ~ y and u an arbitrary element: 

(ux\A) o (uy\A) E . ~  and (ux\B) o (uy\B) ~ ~2. 

Therefore 
[(ux\A) o (us \A) ]  n [ (ux\B)  o ( . y \ B ) ]  e w., 

and this is a subset of 

(ux\A n B) o (uy\A n B) = [(ux\A) n (ux\B)]  o [(uy\A) n ( . y \ B ) ] ,  

from which follows that the last set is in ~ 
Symmetrically one gets for arbitrary v 

(A n B/xv) o (A n B/yv) ~ ~ . 

Thus x ~ l , ~ v A n B y .  Therefore ~ v ~ e v a n B  has not more classes than ~ ;  
this yields a finite number  of classes. 

COROLLARY 5.5. I f  A, B are ~ ,  ~q~-regular then A w B is also ~q~l, 
~q~-regular. 

As a summary can be stated: ( ~  is ~ ,  ~ - regu la r )~  : 

T~EOREM 5.6. ~ ~v.~ is a boolean algebra. 

6. ThE CASE 

The  case ~ seems to be the most interesting one, therefore some remarks 
concerning this filter will be presented. 

I f  ~'~,L is of finite index, then it is possible to construct the corresponding 
finite automaton without final states. 

I t  seems suggestive to believe that the following holds: I f  suitable final states 
are chosen, a formal language L' ,  "being simpler as L and similar to L "  is  
obtained. But the following is possible: There are two infinite classes in the 
minimal automaton of L which coincide with respect to " ~ . L  • Exactly one of 
them is a final state; thus in very case [L'  • L ]  = oo. This seems to be not 
very satisfactory. 

It  is even possible that this happens considering ~ L  which is a refinement 
of ~ L .  The  two classes coincide with respect to ~ (Z*) .~ .L .  The  language 
c*{e, a} u c*{aa, ba} c* yields an example. 
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Furthermore it is false to believe that it is impossible, that the automaton 
corresponding to '~a ,L  contains finite classes; a counter-example is obtained 
by taking L = ab*. (Two terminal symbols are necessary!) 

To obtain the automaton without final states starting with the minimal 
automaton for L one can proceed as follows: 

Assume 27 = (a 1 ,..., an} and let be given the question whether or not the 
classes x, y coincide with respect to ~'~,L • One considers the expression 

~(x, ~ )  = , ( y ,  ~ )  ^ ... ^ ~(~, ~ )  = ~(y,  ~ )  

and substitutes distinct x', y '  by the analogous expression. 
I f  there appears finally 

X 1 - - -  X 1 A " ' "  A X s ~ X s ,  

the classes coincide, in the other case it happens that after some steps of replace- 
ment an expression ~ ~ y will be obtained a second time (a "loop"). Then  the 
classes do not coincide. 

A subset L C 2:* is called disjunctive (Shyr, 1977) or rigid (Eilenberg, 1976, 
p. 187) if from x ~ L Y  follows x = y .  

I t  is natural to give the following 

DEFINITION 6.1. L is called A¢1, ~-d is junc t ive  (~V-disjunctive), if 
X ~-~l,.~%,L y (x ~ , L  Y) implies x = y. 

THEOREM 6.2. I f  a language L is {X*}-disjunctive it is also ~-disjunctive. 

Proof. Let  be x :/: y and a E 27. Because xa ~ L  y a  holds there is a z ~ 2J* 
such that exactly one of the elements xaz,  y a z  is in L. Thus  there is a z 1 ~ 27 + 
such that exactly one of x z  1 , y z  1 is in L. Applying this argumentation to x z  1 , 

y z  1 one obtains z 2 ~ l + etc. Finally one gets an infinite set {zl ,  z 2 .... } such that 
for all i exactly one of xz~,  yz~ is in L. Thus  x ~'~,L Y is impossible. 

The results discussed in this paper seem to be only  a small part of problems 
which can be considered in this context. To give only one example the following 
open question is cited: Does ~ = ~ hold ? 
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